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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

ADVANCE «ntEERS 7 7P ORT

ABERODYNAMIO CHARACTERISTICS AND FLAP LOADS
OF PERFORATED DOUBLE SPLIT FLAPS OW A
RECTANGULAR NACA 23012 AIRFOIL

By Paul E. Purser and Thomas R. Turner
SUMIARY

At the request of tho Bureau of Aeronautics, Navy
Department, tests have been made in the LMAL 7— by 1.0—foot
tunnel bo determine flan loads and additional aerodynamic
characteristics of perforated double split flaps on a rec—
tangular NACA 23012 airfoil., Flap loads were measured at
two spanwise sections on full— span flaps. The effects of
differential flap deflaction, flap span, perforation shape,
location and amount of nerforation, and presence of a
fuselage on the flap loads at one spanwise section were
also determined, The data, are presented- in standard coef—
ficient form and include lift, drag, and pitching moment
for the airfoil- and for the complete model and the normal
force, hinge moment, and center of pressure for the flaps,

In general, the drag coefficient and the flap loads
decreased as the amount of perforation was increased and
as one row of perforations was moved from the flap leading
edge to the flap trailing edge, The variation of drag
coefficient and flap loads with lift coefficient also de—
creased as the amount of perforation was increased. The
shape of the perforations had little effect on the flap
loads.

The presence of an elliptical fuselage reduced the
flap loads and the drag coefficient available with GO—
percent— span perforated double split flaps. With the
double split flaps retracted or with only the lower flap
deflected. (as for landing), the presence of circular per—
forations that removed 33,1 percent of the original area
in tbe upper and lower flaps reduced. the slope of the lift
curve by about 5 percent and the maximum 1ift coefficient
by about 10 percent.
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In connection with the development of dive— and
fighter— brake devices the Bureau of Aeronautics requested
data concerning the loads to be expected on perforated
split flaps and concerning the effects on these loads of
perforation shape, amount, and location, In accordance
with the request of the Bureza1 of Aeronautics, load tests
of perforated flaps were included in the NACA investiga—
tion of dive— and fighter— brake devices. The results of
the load tests and some additional aerodynamic character—
istics of perforated double split flaps on a rectangular
WACA 23012 airfoil are given in the present report.

AFPARATUS AND METHODS

Models

The airfoil model uged (fig. 1) was of laminated
mahogany built to the NACA 23012 profile. The model was
rectangular in plan form and had an aspect ratio of 6.0
(10~in. chord and GO-in. span). The perforated split
flaps were made of 1/16—inch sheet steel and had chords
of 2 inches (20 percent of the airfoil chord). The per— “
forations in the flaps were symnetrically spaced circular,
triangular, scuare, or rectangular holes (see flap details,
figs. 1 and 2) and removed. 33.1 percent of the original
flap area, In order to facilitate partial—span—flap tests
each flap was made in 10 equal- segments, each segment hav—
ing a span of 20 percent of the airfoil semispan., The
segments on each semispan were numbered from 1to 5 pro—
gressively from the plane of symmetry outboard to the
airfoil tip. PFlap deflections were measured with respect
to the airfoil, surface at the flap hinge point and the
gap between the airfoil and the flap was sealed with
modeling clay except at the flap segments that were mounted
on the strain—gage units. For all tests, tho trailing-—
edge portion of the airfoil was removed over the part of
the span covered by the flaps.

The elliptical fuselage used in the tests (figs. 3
and 4) was that used in previous wing- fuselage interfer—
ence investigations (reference 1) and was of laminated
mahogany built to the dimensions given in table I, The
horizontal tail was tapered approximately 3:1l in plan form,

fess



T-415

had a straight tralling edge, and was of laminated mahog-
any built to the NACA 0009 profile. When changes in
horizontal. tail setting were made, the tail was pivoted
about the 50-percent—root—~chord station.

Test Install-atioa

The tests were made in the closed— throat LMAL 7— by
[O— foot tunnel described in references 2 and 3, The flap
loads were measured by two—component electrical. strain-—
gage units and readings were taken from a control panel
located. cutside the tunnel. Because of the small size or
the model, loads could De measured on only one upper or
one lower flap segment at any one spanwise location. The
strain—gage unit for the upper flap was located in the
right semispan of the model and that for the lower flap
was in the left semispan, With the strain— gage units in
place, the flaps could not be set at deflections smaller
thon about 12°, A view of the strain-gnage unit; installed
in the model is shown in figure 5. During the tests the
units were protected from the air stream by thin metal
cover plates.

Test Conditions

All the tests were made at a dynamic pressure of
16,37 mnounds per scuare foot which corresponds to a veloc—
ity of about GO miles per hour and to a test Eeynolds
number of about 609,000 based cn the chord of the model
(10 in.). The effective Reynolds number of the tests was
about 9'74,000 basecd on a turbulence factor of 1.6 for the
LMAL 77— by LO-—foot tunnel.

RESULTS AND DISCUSSION

Coefficients and Corrections

The coefficients used in the presentation of the
results are:

0, 1ift cocfiicient of airfoil or of complete model (L/qS)

¢, drag coefficient of airfoil or of complete model (D/q8)



On pitching—moment ccefficient about quartor— chord

Mo /4 point of airfoil chord of airfoil or of the
complete model (M/qcS)

Crg flap normal— force coefficient (Hs/qS¢)

o, flap hinge—moment coefficient about flap loading

et edge (.Hf/quCf)

(O.P.)f flap center of pressure in percentage of flap

chord from flap leading edge —( Chf/CNf) x 1003

where
L lift of airfoil—flap combination or of complete model
D drag of airfoil— flap combination or of complete model
M pitching moment of airfoill—flap combination or of
complete model
Ne normal force on one flap segment
Hy hinge moment of one flap segment
N

dynamic pressure of air stream (-%pva)
S airfoil area
8¢ area of one flap segment
C airfoil chord
ceg flap chord
and
a angle of attack
8¢ flap deflection from neutral
iy horizontal tall setting with respect to fugelage

center line; positive when trailing edge is down

foen
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The subscripts U and L refer to the upper and
lower flaps, respectively.

Because the support— strut interference and tares
were relatively small, these corrections were applied
only to the plain airfoil data. The standard jet—bound—
asy corrections, which were applied to all the airfoil
and complete—model data, are:

Auy = 6 5 Cp (B7.3)

atn

o |
&~

ACDi = 8

alu:

Oy,

where Awiy 1S measured in degrees, 6 is the jet—bound—

ary correction factor, and € 1is the jet cross— sectional
area. A value of 6 = 0.112 for the closed— throat wind
tunnel- was used in correcting the results. No account
was taken of the different span load distributions with
different airfoil— flap combinations and no corrections of
any kXind were applied to the flag— load data or to the
pitching—moment coefficients.

Aerodynamic Character tics

Atfeotl--- The characteristics of the airfoil with

various spans and deflections of perforated double split
flaps are shown in figures 6 to 14. The effects of flap
span on the airfoil drag coefficient at zero lift for
various flap deflections are summarized in figure 15,
which is a cross plot of the data from figures 6, 10, and
14, The airfoil characteristics are discussed in refer—
ence 4 and 1t is felt that no further discussion is neces—
sary. The principal differences between the results pre—
sented herein and those of reference 4 are that, in the
present tests, a nore complete range of flap deflections
was investigated and, for all the subject tests, the
trailing—edge portion of the airfoil was remove4 from the
part of the span covered by the flaps,

The effects on the airfoil characteristics of vary—
ing the number and location of the perforations in full-
span double split flaps with equal upper and lower de—
flections of 30° and 90° are shown in figures 16 and 1?2,
respectively. Perforations of 33.1 percent reduced the



increment in drag coefficient at zero lift by about 15
percent with flaps deflected 30° and by about 19 percent
with flaps deflected 90°, With flaps deflected 90°, the
same ratio of redaction of drag coefficient at zero lift
to reduction of area held fairly well when the perfora—
tions were symmetrically distributed along both the flap
leading and trailing edges but did not hold: when only one
row of perforations was used along the flap Leading edge
midchord, or trailing edge, With flaps deflected 90°

the drag coefficient at zero lift decreased about 17 per—
cent as one row of perforations was moved from the flap
leading edge to the flap trailing edge,

fomplate model,— The churacteristics of the complete
model with stabilizer settings of C° and —4.4°% are shown
in figure 18 for solid and perforated 60—percent—span
double "split flaps with the upper flap retracted and with
the lower flap deflected 0°, 30°%, and 60° Figure 19
shows the characteristics of the same model with egual
upper and lower deflections of the perforated flaps. With
the upper flap retracted, the perforations in the upper
and lower flaps reduced the slope of the lift curve 9Cy/da
by about 5 percent and reduced the maximum lift coeffi—
cients by about 10 percent. The effects of the perfora—
tions on the slope of the pitching—moment curve .3Cy/307g

and on the tail effectiveness 0C,/diy were small. and

inconsistent (fig, 18). Deflecting perforated double
split flaps (fig, 19) produced marked changes in both
0Cp /00y, and 3C,/diy. NYear zero lift, 00y/d301 changed

from —0.12 to 0.05 when the flaps were deflected 90°%, and
'bhe value was positive for deflections larger than about :
30°., The value of 00y/d0iy changed from —0.020 to —0.001

when the flaps were deflected 90° at zero Lift.. The values
of dynamic pressure at the tail computed from 0C,/diy

agreed reasonably well with the values measured in the
tests of reference 4. According to the results of refer—
ence 4, the tail would have t¢6 be raised about 0.75c¢ 1n
order to clear the wake.

The results of tests made of the airfoil and the 60—
percent—span flaps with a cut—out the width of the ellip—
tical fuselage at the flap midspan are shown in figure 20.
Figure 21 presents cross plcts of the increments of drag
coefficient at zero Lift due to deflecting the flaps for
various arrangements of perforated double split flaps.
The results (fig. 21) show that the increment in drag
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coefficient due to deflecting perforated double split
flaps on a midwing monoplane not only does not carry
across tlie fuselage but is actually reduced by the wing—
fuselage interference to a value slightly less than that
obtained from an equal flap areca on the plain airfoil,
(See also references 1 and 5.)

Flap Loads

Effect of flan _.span_and location.— Flap loads for

e S

equal upper— and lower— flap deflections are presented in
figures 6, 10, and 14 for the flap seguent extending from
0.20 b/2 to 0.40 bv/2 on full— span, 60—percent—span, and
40— percent—span flaps and for the tip segment of full-—
span flaps, Figure 22 is a summary of the data of fig-—
ures 6; 10, and 14 in the form of flap normal-fsrce and
hinge—moment coefficients plotted against flap deflection
at lift coefficients of 0 and 0.9. A%t constant flap de—
flection the upper— flap loads showed less variation with
lift coefficlent when the segment under considaration was
at the flap tip than when the segment was not at the flap

tip. For the lower—flap loads, the trend previously noted
was reversed for the full—span flaps and was small and
inconsistent for the partial— span flaps. At constant 1ift

coefficients of 0 and 0.9, the loads on the 0.20 b/2 to
0.40 b/2 upper— flap segment generally became smaller as
the flap span was reduced and the comparable lower— flap
loads generally became larger. At zero lift, the upper—
flap loads were smaller for the tip segment but, at a
1ift coefficient of 0,9, the upper— flap loads were smaller
when the segnent under consideration was not at the tip.
For the lower flap, the tip—segment loads were larger at
1ift Coefficients of both O and. 0.9.

Effect of lower flap on upper=flisp Feeds.— The ef-
fects on the upper— flap loads caused by deflecting the
lower flap are shown in figures 7 to 9 for full—span flaps
and in figures 11 to 13 for 60-percent—span flaps. TFor
both full—span and partial— span flaps, increasing the
lower—flap deflection usually increased the upper— flap
normal—force and hinge—moment coefficients but the numer—
ical values were inconsistent, Deflecting the lower flap

had little effect on the variation of upper— flap loads
with 1ift coefficient.

Effect of upper flap on lower—flap loads.— The ef—
fects on the lower~flap loads caused by deflecting the

P



upper flap may be determined from comparisons of figures

7 to 9 for full~span flaps and figures 11 to 13 for 60—
percent— span flaps. In general, the effects of the upper
flap on the lower— flap loads follow the same trend previ-—
ously noted for the effects of the lower flap on the upper—
flap loads; that is. increasing the upper— flap deflections
increased the loads on the lower flap.

Effect of varying number and location of perfora—

tiong.,— The effects on the flap loads of varying the num—
ber and location of tho perforations in full— span double
split flaps are shown in figures 16 and- 17 for equal
upper— and lower—flap deflections of 30° and 90°, respec—
tively, The effects on the flap loads of varying the num—
ber and the location of the perforations were rather in—
corsistent but showed the same trends note6 previously in
the discussion of drag; that is, the flap loads generally
became smaller as the amount of perforation was increased
and as the location of one row of perforations was changed
from the flap leading edge to the flap trailing edge.
Decreasing the amount of perforation generally increased
the variation of flap loads with 1ift coefficient.

Effect of perforation shape on upper—flap loads.— The

loads on the upper— flap seginent extending from 0.20 b/2

to 0,40 b/2 for 30° and 90° deflections of full— span
double split flaps with circular, triangular, square, and
vrectangular perforations are shown in figure 23. At flap
deflections of 30°, the flap with circular perforations
had the largest loads, Changing the perforations to
squares reduced the flap loads and moved- the flap center
of pressure nearer the trailing edge; triangular and rec— .
tangular perforations also reduced the flap loads but
moved the flap center of pressure nearer the leading edge,
The circular perfsrations gave the smallest variation of
flap loads with 1ift coefficient, With the flaps deflected
90°, there was no consistent variation of flap loads with
perforation shape.

Bffect of fuselage on upper—flap loads.— The effects

of the presence of the fuselage on the upper— flap loads
for equal upper— and lower— flap deflections are shown in
figure 24. The principal effects of the fuselage were to
reduce the flap normal— force coefficients and to move the
flap center of pressure nearer the flap trailing edge with
the result that little effect was apparent on the flap
hinge— moment coefficients. In general, the presence of the
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fuselage slightly reduced the variation of £lap normal-
force coefficient with angle of attack.

Application of Data

The application of data on perforated split flaps to
the design of dive brakes and. fighter brakes has been dis-
cussed in references 4, 6, and 7. As an aid to such appli-
cations, a part of the aerodynamic data presented in thisg
report has been summarized in figures 25 and 26. Figure
25 presents contours of angle of attack, drag coefficient,
and pitching~-moment coefficient at zero lift for full-span
and 60-percent-gpan perforated double split flaps. Con-
tours of 1lift, drag, and pitching~moment coefficients at
zero augle of attack are given in figure 26. The contours
at zero lift can be used in dive-brake design, the con~-
tours at zero angle of attack can be used in fighter-
brake design, and the cross plots in figures 15 and 21
should be ugeful as guides for interpolation in applying
the data of figures 25 and 26 to the design of flaps other
than full-span or 60-~perceant~gspan flaps,

CONCLUSIOBS

§

The results of the tests of double split flaps on a
10- by 60-inch rectangular NACA 23012 airfoil indicate
that the effects of perforations on tbe flap character-
istics may be summarized as follows: In general, the
drag coefficient and the flap loads decreased as the
amount of perforation was increased and as one row of per-—
forations was moved from the flap leading edge to the flap
trailing edge. The variation of drag coefficient and flap
loads with 1ift Coefficient also decreased as the amount
of perforation was increased. The shape of the perfora-
tions had little effect on the flap loads..

The presence of an elliptical fuselage reduced the
loads on and the drag coefficient available with 60-percent-
span perforated double split flaps. With the double split
flaps retracted or with oaly the lower flap deflected (as
for landing) the presence of circular perforations that
removed 33.1 percent of the original area in the upper and
lover flaps reduced the slope of the lift curve by about

o
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5 percent and reduced the maximum 1lift coefficient by
about 10 percent.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va.
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TABLE I

DIMENSIONS OF ELLIPTICAL FUSELAGE

Station Major axis Minor axis
(in.) (in.) (in.)
0 0 0

i 312 2.044 1.168
.812 3.286 1.878
1.312 4.158 2.376
2.312 5.408 3.090
4,312 7.010 4,006
6.312 8.564 4,894

12,312 9.020 5.154

16.312 9,100 5.200

20,312 9.010 5.148

24,312 8.646 4.940

28,312 7,910 4,520

32,312 6,658 3. 804

34,312 5,740 3,280

36,312 4.494 2.568

38,312 2.646 1.512

39,312 1.450 .828

40.312 0 0

11



L-415

NACA Fig- 1
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NACA | ; - Fig 3
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and horizontal tail.



NACA Fig. 4

ta) Three—quarter front view.

=

e

(b) Three-quarter rear view.

Figure 4.— The 10-by 60—inch rectangular NACA 23012 airfoil with 0.20c by 0.60b perforated..
double split fla]l))s in combination with the elliptical fuselage and horizontal
tall mounted in the LMAL 7-by 10—foot tunnel.
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